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Abstract 

We study the fermion number induced by solitons in the O(3) nonlinear CT model in 
2fl dimensions, in the presence of a parity breaking fermion mass term. The appear- 
ance of zero energy modes during the adiabatic evolution of a background of winding 
number unity is analysed as a function of the relative magnitudes of the explicit, odd 
parity, fermion mass. modd, the fermion mass induced by the Yukawa coupling, my, 
and the inverse soliton width, l/p,. We find pC, the maximum value of p = p,my 
for which a fermion zero energy level crossing occurs. For Mf = m,dd/my < 1 and 
p > p,(Mf) the ground state charge of the sol&on is wholly topological. Otherwise, it 
vanishes. 
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Recently, renewed attention has been given to 2fl dimensional physics and the mod- 

elling of systems of statistical mechanics [l]. In particular, in the case of the nonlinear o 

model coupled to fermions, this interest has been stimulated by the possibility of providing 

a field theoretic realization of a system of interacting spin waves and holons, that could de- 

scribe the behaviour of high Z’, superconducting materials. Several aspects of these models 

remain speculative at present, nevertheless, the nonlinear o model has interesting physical 

properties that make it worthy of study in itself. Let us consider the (2+1)-dimensional 

O(3) non-linear o model coupled to an isodoublet, $J,, of two component fermions, treating 

the scalar triplet 4. + (d, 4s) as a background configuration (141 = v), 

i: = +kwv. + ihap - gvifb~a7,~. 
The above Lagrangian is invariant under discrete parity transformations, under which the 

fields transform as: 

w, 21, 22) + Tzr W, -z1,4 

@,z1,4 =4a(t,Zl,Q)T,--+ u(t,-zl,Q)T2. (2) 

Our conventions for the 7 matrices in 2+1 dimensions are: 7O = Ss and 7’ = t,?‘, i=1,2, 

obeying the Clifford algebra [7@,7”] = 2g@” and 7’7” = g*” - ~fi”~7~. S, and T,, a=i,3, 

are the Pauli matrices oa in the Dirac and weak isospin spaces, respectively. An explicit 

mass term for the fermions 

&dd = -%dd@ (3) 

is odd under the parity transformation, and its inclusion in the model can lead to interesting 

consequences. 

This nonlinear classical field theory has topologically nontrivial soliton solutions [2] due 

to the nontriviality of rrr(Sr) = 2. The expression for the winding number (topological 

charge) is 

n(= Qt,.) = ’ PtijCobc d2z~.ai+~LJ’~,. 
&TV3 / 
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A topological term associated with the nontriviality of the homotopy classes of rs(Sr) = Z 

can be included in the action, AS = 6’ H. The so-called Hopf term 

H = K 
/ 

dszt”*j,,~,~j~ , 

where j, is the topological current that leads to eq.(4), breaks P and T invariance. Its 

appearance may induce nontrivial spin and statistics for the solitons, depending on the 

parameter 6. In our discussion, we do not introduce a Hopf term in the tree-level action. 

However, due to the presence of the parity odd mass m&, a Hopf term can be induced 

through radiative corrections [3]-171. 

The fermionic charge induced by scalar soliton backgrounds has been extensively stud- 

ied in even dimensional space times [g] and, more recently, in 2+1 dimensions [3], [7], [9]. 

The adiabatic method [lo] is a powerful technique to evaluate the induced fermion current 

in powers of derivatives of the background fields[ll]. The fermion number induced by a 

soliton background configuration obtained in the adiabatic limit of the gradient expan- 

sion, Q;,,d,, can be used to calculate the fractional part of the ground state charge in all 

generality. However, to accurately compute the ground state charge of the system, QGS, 

the number of zero energy level crossings n+(rz-) in the positive (negative) direction of the 

energy axis that occur during the adiabatic evolution must be evaluated [ll]-[lS], 

Qcs = Qind. - (n+ - n-) . (‘3) 

In this work, we study the ground state charge of the system in the background of 

a topologicaily nontrivial scalar configuration in the O(3) nonlinear o model in 2+1 di- 

mensions, in the presence of parity breakdown. A similar analysis has been done recently, 

for the parity even 2+1 dimensional O(3) nonlinear o model (m& = 0)(17]. It has been 

shown that a s&ton carries the fermion number of any fermion which is sufficiently heavy 

compared with the typical mass scale of the topological configuration. The odd parity 

2+1 dimensional model has a unique feature, namely an extra dimensionful parameter 

- the explicit fermion mass responsible for parity breakdown- which makes the analysis 
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more complicated. Our goal in this work will be to obtain constraints on the values of 

the soliton width, the explicit parity odd fermion mass, and the Yukawa coupling induced 

fermion mass, for which the ground state charge of the system is wholly determined by 

the topological charge of the soliton. 

Following [16], we choose an interpolating configuration that builds up the soliton 

adiabatically from the trivial vaccum 

&I = vcos[h(t)(x - arccosf~(r))] ) 

J(r, t) = (&, q&J = v sin[h(t) arcsin fz(r)]i 7 L P. 7 

= -vsin[h(t)(?r + arcsinfi(r))]? f- 2 P. 1 (7) 

where i = F//T, and p. is the soliton width. jl(r) g oes monotonically from -1 at r = 0 

to 1 at r + 00, f*(r) 5 0 vanishes at r + O,oo, but is otherwise negative, h(t) being 

a function which varies slowly and monotonically from 0 at t = -co to 1 at t = 00 

(h(t) + h(-t) = 1) and arcsinfi and arccosfi taking values in the intervals [-7r/2,r/2] 

and [0,x], respectively. The configuration (7) gives a soliton of winding number unity at 

h(t) = 1, qS(h(t) = 1) = v ( f*(r)?, -fi(r) ) and the boundary condition at spatial infinity 

is qi(h(t) = l,r -+ co) = (0,0,-l). The expression for the adiabatic current has been 

calculated in ref. [3] using the gradient expansion, 

<j”(z) >= 9’e(i%’ - Imoddl) 
1 

lhl 
-Ep”XE‘d,aYwA~c 1 
87+#13 

This expression is reminiscent of the analogous results in even dimensions and in the parity 

invariant 2fl dimensional case, however, it has a peculiar discontinuity at the critical 

value of Mf = m&d/my = *I, where the 19 function changes value from 0 to 1. The 

adiabatic method breaks down at M, = ztl where, due to the presence of a massless mode, 

the condition of slowly varying background configurations over the Compton wavelength 

of the fermion can no longer be satisfied. In the present work we will not discuss this 

particular limiting case. In the adiabatic limit of the gradient expansion, and for positive 

gV, the fermion number induced by a soliton background is found to be identical to the 
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topological charge of the soliton whenever ]M,] < 1 and to vanish whenever ]Mfl > 1 . In 

the following we will assume a positive value of gr. In order to evaluate the ground state 

charge of the soliton we must analyse the existence of zero energy level crossings during the 

adiabatical evolution of the scalar configuration. In the presence of the scalar background, 

the Dirac equation for the eigenstates of energy E is, 

E$J = -Siai(S,ll)+~,T.(Ss~)+MI(Ss~) (9) 

Here, we have defined new variables in terms of the fermion mass scale induced through the 

Yukawa coupling to the scahars, my = Vgv, which are E -+ E/my, modd ---f m&/my E M,, 

2’ = Frnr and p = p.mr. We have also resealed the fields, ps = e&/v , and ‘pi = &/v. 

Since (oz = ‘ps(r) and @ = p(r)?, the “grand” momentum operator, defined by MS = 

j3 + 13, where js = -40 + % is the ordinary angular momentum and Is = ‘; is the isospin, 

commutes with the Hamiltonian, Eq. (9). Therefore, as in ref. [17], we make an ansatz 

for the fermion that is a simultaneous eigenstate of energy and “grand” momentum, 

c+g = exp(zem) (10) 

where MsG(,) = m$(,,,), 2 = (cosO,sinO) and z = ]?I. I n t erms of the radial functions gt, 

gz, gs and gd eq. (9) reduces to a set of first-order, coupled, differential equations: 

&gz = fgz - ws + (E - Mf - pps) g1 

ad73 = -;g3 - wz - (E + Mf - ~73) gr 

a,g, = -(l 1"' a- (oa - (E + Mf + ~3) gz 

gr - 'pa + (E - Mf + ‘~3) g3 (111 

It is possible to argue quite generally that there is a critical value of the soliton width 

above which zero energy modes cannot exist. The argument is similar in spirit to that 
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given for the O(4) model in four dimensions in ref. [15] and for the modd = 0 case in 

ref.[l7]. A normalizable zero energy mode is a solution to the equation 

z7’W = sU4.TV + mddrl. (12) 

In order to show the absence of zero energy modes for sufficiently wide solitons, it is 

convenient to define the field V(z), which belongs to the fundamental representation of 

SU(2), and such that I&T” = uUTSUt. Once the field U is rotated away, eq.(12) reads 

l7’ (ai - iAi) X - (myTS + m&)X = 0 (13) 

where Ai = cUt&U and x = Ut$. The characteristic energy scale of the gauge field Ai is 

given by l/p.. Hence, the perturbations of the free Dirac spectrum will be characterized 

by l/p,, and no solution to eq.(13) will exist whenever 1 f my + no& >> l/p,. 

The exact value of the soliton width is not relevant as long as it is sufficiently smaller 

than the critical width. Thus, we will analyse, using analytic arguments, the existence of 

zero energy modes during the evolution of an infinitely narrow soliton of winding number 

unity. In the limit p. = 0 the expression for the scalar field eq. (7) reads (as(t) = cos[h(t)z], 

p(t) = -sin[h(t)rr]. Therefore, it obeys the relation ps(t) = -ps(-t) and (o(t) = v(-t). 

Using this relation, and redefining E + -E and m + -m in eqs.(ll), we observe that 

for each solution $;f, = exp(zeml ([g1exp(-4, 4, [gs, g4w(41) of energy E in the 
orbital m at time t, there is a solution $?,,, = w(-zem) (IS4 exp(-4,931 , b2,gl ~~PWl 

of energy -E in the orbital -m at time -t. Therefore, at the time t = 0 and in the scalar 

background with p1 = 0, there is a symmetry in the Hamiltonian Hr=c, which gives a one 

to one correspondence between states of positive and negative energy. Hence, the spectral 

asymmetry, defined as the c-function regularization of the difference between the number 

of positive and negative eigenvalues of the Dirac Hamiltonian, vanishes, n~n~=~] = 0. 

The h(t) = 1 infinitely narrow soliton background is equivalent to the vacuum configu- 

ration and, consequently, its ground state fermion number vanishes. The induced fermion 

number, as given by the adiabatic method, is equal to the soliton winding number, when- 
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ever the explicit parity odd mass is smaller than the fermion mass induced through the 

Yukawa coupling. Therefore, whenever MI < 1, one zero energy level crossing must occur 

during the adiabatical evolution in order to get consistency between the induced and the 

ground state fermion numbers. From the symmetry considerations above it is clear that if 

a zero energy level crossing occurs at any time t in the orbital m, another zero energy level 

crossing occurs at time --t in the orbital -m. Thus, a single zero energy level crossing 

can only occur if a zero mode is present in the m = 0 orbital, and at the time t = 0, for 

which a symmetry exists in the Hamiltonian. Eq.(7) tells us that (os(r, t = O)],,=c = 0 and 

p(r,t = O)lp,=o = -1. 

Consider the equations (11) in the background of the interpolating scalar field from 

the vacuum to the step soliton final state, at the time t = 0, and with pI = 0, m = 0 and 

E = 0. We observe that upon identifying gl-’ = gt = -94, and &’ = gr = -gs, the set of 

four coupled equations reduces to the equations 

a;gp = -a,,r-)(Z+~)-gj-)(~-M;+l) 

&&) = -gi-’ - a&-’ 
(14) 

Another possibility, is to define gp) = gt = g4 and gp) = gz = gs. In this case the 

equations reduce to 

a:gl+) = a&) (2-;)+Bi+)(~+M:-l), 

M,g$+’ = -&g1+) +g1+) (15) 

The solutions to these equations are given by [18] 

SF)(z) = exp(&r) (A~‘K1(Mfz) + Ay’)Il(Mfz)) 

gF)(z) = exp(&) (AF)Ko(Mfz) - A~)l,(Mfz)) (16) 

where Ij(Mfz) and Kj(A4fz) with j = 0,l are the modified Bessel functions, and the 

AI*‘) with i = 1,2 are normalization constants. A normalizable solution must satisfy the 
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condition /g<] < l/z, in both the limits z + 0, and z -+ co. Consequently, no normalizable 

solutions exists for gp) and gp). For g$-’ and 91-j a well behaved solution exists only if 

the condition M, < 1 holds. For Ml < 1, the normalizable solution reads 

gr(z) = -gd(z) = A$-)exp(-z)lt(M,z) 

gz(z) = -gs(z) = -A$-) exp(-z)Is(M,z). (17) 

Therefore a zero energy level crossing occurs during the adiabatical evolution of an infinitely 

narrow soliton whenever the parity odd fermion mass is smaller than the fermion mass 

induced through the Yukawa coupling. This result is consistent with our predictions based 

on the adiabatic result for the induced charge and the known value for the ground state 

charge for the final soliton of width ps = 0. 

Let us recall that the spectral asymmetry is related to the ground state charge by 

the usual expression, Qos = -nln1/2. However, in the presence of zero energy modes of a 

given Hamiltonian Ht the above expression is modified after taking into account the charge 

degeneracy and reads[ 131 

QGS = -y - ; (N;,"="d -N;&) , 

with IV”“” (Occ’) being the number of zero energy modes at time t that are empty or occu- tE=O 

pied, respectively. Therefore, due to the existence of the zero energy mode in the scalar 

background at time t = 0 and for p. = 0, the ground state charge of this scalar field is 

QGS = &l/2. The adiabatic method predicts that at t = 0 one has Qiad. = l/2. The 

value QGS = *l/2 can be obtained by considering the zero energy mode to be occupied 

(empty), in which case it must (not) be counted as part of the system’s ground state and 

the induced charge is equal to (differs by one unit from) the ground state charge. 

We will now evaluate the ground state charge of the soliton configuration of width 

p. = p/my and topological charge unity. We already know that its induced charge is 

determined by its topology for any ~$4, < 1, and that it vanishes for MI > 1. Thus, 

to obtain the exact value of its ground state charge we have to compute the number of 
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zero energy level crossings in the adiabatical evolution to the soliton background. We 

will define the critical width p. as a lower bound of p, above which no zero energy level 

crossings occur. If a zero energy level crossing occurs during the adiabatical evolution, the 

time t at which it takes place increases monotonically with p[17]. Hence, the critical value 

of the soliton width given in units of l/my, p = p., is identified with the value of p at 

which a zero energy mode appears in the final soliton background. For p > p. the ground 

state charge of the soliton is completely determined by its topology [17]. 

In our model, we expect values of p. to appear as a function of the parity odd fermion 

mass, also given in units of the inverse of the Yukawa type fermionic mass. Based on the 

results obtained for the infinitely narrow soliton, we will restrict our present analysis to 

the m = 0 orbital. The scalar configuration under consideration should be sufficiently 

simple to allow the analytic evaluation and sufficiently general so that the conclusions we 

arrive at are representative of those to be obtained in the background of any scalar soliton 

of winding number unity. For simplicity, then, we propose step-like approximations to a 

smooth scalar field configuration of given width as follows (see Figures la and lb): 

i 

1 z < 5, 0 z < z1 
‘ps= 0 z1 < z < z* (o= 

i 

-1 z1<z<z* ) (191 
-1 z>zr 0 z > z2 

where we define zi = (1 - a)p, zr = (1 + a)p and p = (zl +x1)/2. The appropriate value of 

the parameter a will be determined below. In the following, we first solve the differential 

equations, eq.(ll), for a zero energy eigenvalue separately in the three regions of space 

defined in eq. (19), and then match the solutions at the boundaries. 

For E = 0 and m = 0, the solutions to eq. (11) in the intermediate region, zi < z < zz, 

( (0s = 0, (0 = -l), are identical to the solutions to eqns. (14) and (15). Since no 

normalizability restriction has to be considered within this region, the general solutions 

for the radial functions are a linear combination of those given in eq.(16), 
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a(z) = e(-=) (Al-)Kl(Mp) + Ai-)I@,=)) + e(=) (A$+k@,z) + A$+)ll(M,z)) 

g&l = J-z) (AI-)K~(M,z) - A$-)L(M,z)) + ecz) (A~)K~(M,~) - A$+)I~(M,~)) 

gs(z) = -e[+ (A!-)Ko(Mfs) - A$-)l+4,~)) + e(‘) (AI+JKo(M,~) - A$+)I~(M,z)) 

g&) = -e(-=) (A$-k(M,z) + A$-k(M,z)) + e(‘) (A(:kl(it4,z) + A~)Il(M,z)) (20) 

For the spatial intervals z < zt ( ‘p = 0,‘p3 = 1) and z > zr (up = 0,cp3 = -1) the 

equations reduce to 

aZg2 = -$%g* + ((03 + M,)2 92 I 91 = - ((03 : M,) d&2 

aZs3 = -&3 + ((03 - M,)2 g3 I S4 = (p3 2 M,) a& (21) 

The only normalizable solution to the above set of equations in the region z < rl (rp3 = 1) 

reads, 

92 = ClZO(ll + M,lz) , g1 = -C,I,(ll + M,lz) 

93 = wow - M,lz) , gr = fCJl(l1 - M,Iz) , (22) 

where the plus sign in g4 corresponds to the case M, < 1, while the minus sign stands for 

the case M, > 1. Analogously, in the interval z > zz (~3 = -1) the only normalizable 

solution is given by 

gz = D&(ll - M,lz) , gl = +DlKl(Il - M,lz) 

93 = DzKdll + M,Iz) , gr = D&1(/1 + M,Iz) , (23) 

where the minus sign corresponds to the case M, < 1, while the plus sign holds for the 

opposite relation. The constants AI*), Ci, and DC, i=1,2, are to be determined by the 

normalization and continuity conditions. The continuity conditions at the boundaries, 

z = ~1, and z = ~2 yield eight linear homogenous equations for the above constants. A 

non-trivial solution requires the vanishing of the determinant of the coefficients of these 
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equations. Using MathcmaticaTM, we have evaluated this determinant numerically. For 

any given value of M, < 1, we obtain a single critical value of p = pe for which the 

determinant vanishes. For M, > 1, instead, no solution compatible with the vanishing of 

the determinant has been found. 

In order to determine the appropriate step like approximation to a smooth scalar soli- 

ton, we analyse the dependence of pe on the value of a, for different values of M,. We find 

that p. is almost independent of a for a wide range around the minimum value pe(a,,,in.). 

In Figure 2 we show the above dependence for M, = 0 and M, = 0.9. A reasonable value 

of a is one close to amin. and we choose (I! = 0.5 to be a suitable value of Q for any value 

of M, < 1. 

Our results appear in Figure 3, where pe is plotted as a function of M,, for a = 0.5. 

Notice that the value of pe is almost stationary for small values of M,, while it grows very 

rapidly when M, -+ 1. Moreover, the value of pe tends to infinity as M, + 1. This gives 

evidence of the presence of a massless mode in the M, = 1 free fermion spectrum. 

In conclusion, the ground state charge of the soliton is wholly determined by its top* 

logical charge whenever the parity odd fermion mass mea is smaller than the fermion mass 

induced by the Yukawa coupling my and the soliton width p. > pc(M,)/my. Otherwise, 

it vanishes. 
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FIGURE CAPTIONS 

Figure 1: Scalar configuration as a function of z (solid line), and its step like approxi- 

mation as given in Eq.(l9) (dashed line), for a) rps(z) , b) p(z). 

Figure 2: Critical value of the soliton width, pe, normalized to its minimumvalue ~~(a&,,.), 

as a function of the parameter a, for M, = 0 (solid line) and Mf = 0.9 (dashed line). 

Figure 3: Critical value of the soliton width, pe, as a function of Mf, for (Y = 0.5. 

14 



,----- - 

/ 



x 



0 
2 

8 

??a 
c\! 
.m 
LL 

1 
I 

, 

I 
I , 

I 

i J , 
I 

( 

x 

3 



I I 

x 

0 
d 


